Muscle and nerve-specific regulation of a novel NK-2 class homeodomain factor in Caenorhabditis elegans.
نویسندگان
چکیده
We have identified a new Caenorhabditis elegans NK-2 class homeobox gene, designated ceh-24. Distinct cis-acting elements generate a complex neuronal and mesodermal expression pattern. A promoter-proximal enhancer mediates expression in a single pharyngeal muscle, the donut-shaped m8 cell at the posterior end of the pharynx. A second mesodermal enhancer is active in a set of eight nonstriated vulval muscles used in egg laying. Activation in the egg laying muscles requires an 'NdE-box' consensus motif (CATATG) which is related to, but distinct from, the standard E-box motif bound by the MyoD family of transcriptional activators. Ectodermal expression of ceh-24 is limited to a subset of sublateral motor neurons in the head of the animal; this activity requires a cis-acting activator element that is distinct from the control elements for pharyngeal and vulval muscle expression. Activation of ceh-24 in each of the three cell types coincides with the onset of differentiation. Using a set of transposon-induced null mutations, we show that ceh-24 is not essential for the formation of any of these cells. Although ceh-24 mutants have no evident defects under laboratory conditions, the pattern of ceh-24 activity is apparently important for Rhabditid nematodes: the related species C. briggsae contains a close homologue of C. elegans ceh-24 including a highly conserved and functionally equivalent set of cis-acting control signals.
منابع مشابه
The Caenorhabditis elegans NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle.
The pharyngeal muscles of Caenorhabditis elegans are single sarcomere muscles used for feeding. Like vertebrate cardiac and smooth muscles, C. elegans pharyngeal muscle does not express any of the known members of the MyoD family of myogenic factors. To identify mechanisms regulating gene expression in this tissue, we have characterized a pharyngeal muscle-specific enhancer from myo-2, a myosin...
متن کاملThe Caenorhabditis elegans NK-2 homeobox gene ceh-22 activates pharyngeal muscle gene expression in combination with pha-1 and is required for normal pharyngeal development.
Pharyngeal muscle development in the nematode Caenorhabditis elegans appears to share similarities with cardiac muscle development in other species. We have previously described CEH-22, an NK-2 class homeodomain transcription factor similar to Drosophila tinman and vertebrate Nkx2-5, which is expressed exclusively in the pharyngeal muscles. In vitro, CEH-22 binds the enhancer from myo-2, a phar...
متن کاملThe NK-2 class homeodomain factor CEH-51 and the T-box factor TBX-35 have overlapping function in C. elegans mesoderm development.
The C. elegans MS blastomere, born at the 7-cell stage of embryogenesis, generates primarily mesodermal cell types, including pharynx cells, body muscles and coelomocytes. A presumptive null mutation in the T-box factor gene tbx-35, a target of the MED-1 and MED-2 divergent GATA factors, was previously found to result in a profound decrease in the production of MS-derived tissues, although the ...
متن کاملAnalysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning.
Mesodermal development is a multistep process in which cells become increasingly specialized to form specific tissue types. In Drosophila and mammals, proper segregation and patterning of the mesoderm involves the bHLH factor Twist. We investigated the activity of a Twist-related factor, CeTwist, during Caenorhabditis elegans mesoderm development. Embryonic mesoderm in C. elegans derives from a...
متن کاملNeuronal migration is regulated by endogenous RNAi and chromatin-binding factor ZFP-1/AF10 in Caenorhabditis elegans.
Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 125 3 شماره
صفحات -
تاریخ انتشار 1998